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1. Introduction

In this paper we will discuss several software engineering 
practices that have proven useful in a large multi-
disciplinary physics code development project at 
Lawrence Livermore National Laboratory.

In the project discussed here, as with many large scale 
efforts in HPC scientific computing, we have had to 
balance the competing demands of being a stable 
"production" code that our user base can rely on with 
being a platform for research into new physics, models, 
and software architectures.  Much of this has been learned 
through necessity and experience.  Likewise, much of it 
has been learned through interactions with other similar 
projects and hearing of their successes, and tailoring their 
ideas to our own requirements.

The ideas presented here are not meant to necessarily 
transfer to other environments with different needs.  It is 
our belief that projects need to be given large latitude in 
defining their own software engineering process versus a
prescribed a solution.  However, the ideas presented here 
are hopefully high level and general enough that we hope 
other projects might find some inspiration and adopt 
similar methods if it is to their benefit, much as we have 
done through the years.

2. Project Background

This project involves a code which has been around in one 
form or another since the mid 1980's, at which time it was 
run primarily on the Cray vector architectures.  In the 
early to mid 1990's, an extensive rewrite was undertaken 
with several primary goals:  1) Porting to MPP 
architectures and a message passing base, 2) rewriting the 
high level architecture in a more modern language with 
better support for data structures and dynamic memory, 
and 3) building a code which could act as a framework for 

implementing new physics while not adversely disrupting 
the core validated physics.  The team simultaneously grew 
in size from a handful of people to a large multi-
disciplinary team consisting of code physicists, engineers, 
chemists, computer scientists, and analysts.

For many years our laboratory, software quality 
engineering has been something that is left up to the 
individual projects to define. On this particular project, we 
took the attitude that anything that made our lives easier 
by a) automating (and thus simplifying) the workflow, b) 
reducing the number of phone calls from our users, c) 
making it easier to add new capabilities to the software, or
d) generally allowing us more time to work on "fun stuff",
was considered good software engineering.  Processes 
which seemed arbitrary or generally not applicable to our 
environment were not considered, or ejected.  As a result, 
we have been steadily working toward a software 
workflow process which we believe is (asymptotically) 
approaching optimal for our particular environment.  
Below we will touch on just a few of the areas where we 
have seen a positive impact.

3. Regression Testing

The value of regression testing (testing answers produced 
by a given version against a set of validated baselines) 
first becomes apparent to developers when they discover 
that someone else has inadvertently broken their software.  
Although frustrating, it's hard to cast blame when the other 
person can simply say "But how was I supposed to know -
you never added a test problem which would let me know 
I broke it!".  So if for no other reason, regression testing 
makes for a good defensive strategy!

On our project, we are in the process of defining several 
levels of regression testing, all under the framework of a 
set of customized scripts which will automate the process.  
These are all designed to catch bugs as early in the 
development cycle as possible.  They are:
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• "Smoke" test
o Prevent bugs from ever making it onto 

the integration branch
• "Overnight" test

o Catch bugs missed by the smoke test 
within 24 hours

• "Promotion" test
o Catch bugs before they make it into a 

public release of the software

Our most often run test suite is the aforementioned
"smoke test". The main purpose of this test is to make sure 
that no one is allowed to commit a change into our source 
code repository which would break something that worked 
prior to the commit.  The smoke test suite is a large set of 
problems (> 100) that attempt to maximize coverage in a 
minimal amount of time (preferably 30-60 minutes total, 
or 10-60 seconds each) but running small, low resolution, 
fast running “toy” problems.  We keep a set of baseline 
answers in the form of a restart file from which we do a 
bitwise comparison the end of each run.  If the answers 
have changed for any reason, this must be documented 
and the baseline answers in the repository replaced. The 
smoke test can run some problems in parallel, although 
we're usually limited to just several processors of a shared 
memory workstation for simplicity.  

We have stressed the importance of bitwise comparison 
(versus a differencing that allows for relative or absolute 
tolerances) in the smoke test because we have found that 
often many bugs manifested themselves in very seemingly 
minor ways, and could easily be either brushed off as 
"round-off error" without careful study, or hidden by 
tolerances.  So although we don't require developers to 
always be able to bitwise reproduce answers (as obviously 
this would preclude desirable activity such as algorithm 
improvement or certain performance enhancements), we 
do want them to understand and document the reasons for 
any changes, no matter how minor.  Furthermore, bitwise 
comparison of binary restart dumps are made easier 
through the usage of a portable binary format (similar to 
HDF5 [1] in functionality) which provides a diff tool from 
which we can easily filter out differences that do not 
matter, such as timestamps or code version numbers 
embedded in the file.

In a perfect world, our smoke tests would catch all bugs 
being introduced into the code. However, some bugs just 
will not manifest themselves in small, short running 
problems.  Thus, our second tier of testing (what we call 
our "overnight" test) adds another layer of test problems 
designed to as quickly as possible (within 24 hours of a 
commit) determine if a bug has been introduced to the 

repository.  It is different from the smoke test suite in two 
primary ways:  First, it runs for a longer time, as unlike 
the smoke test, no one is typically waiting on the results to 
continue the process of updating the code.  As the name 
implies, we run this suite of jobs during off-hours, and a 
report is waiting for us each morning if a failure has 
occurred.  Secondly, the tests tend to stress more 
integration of multiple features of the code.  They are 
often tests contributed by our users, or designed by 
developers specifically to stress attributes of the code that 
make for a longer runtime.  For these tests, we check for 
differences in a representative set of values (e.g. min/max 
coordinate extends, min/max pressure, etc...) for 
comparison with baseline results.

Our final tier of testing is our "promotion" test suite.  The 
promotion test suite consists of a set of problems that 
typically will take days to run, and are large scale parallel 
multi-physics problems. Our project supports a concept of 
multiple branches of development (see "configuration 
management"), and this test is a final check to make sure 
that typical user problems which ran on past stable 
versions of the code continue to run.  Likewise, this 
indicates that the months of new development is ready for 
release to users.

In all cases, we try to continuously improve the quality of 
each suite.  If a bug snuck into the repository that should 
have (or could have) been caught, we will either add a 
new test problem or modify an existing test problem to 
one of the suites to make sure it does not happen again.

4. Configuration Management

A well-defined software configuration management 
(SCM) system has been key to both defining and 
enforcing our software process workflow.  At the core of 
our SCM system is the concept of maintaining multiple 
simultaneous branches of the code.  Inspired by projects 
such as the Linux kernel which maintain a stable bug-fix 
branch while simultaneously doing major development on 
a different branch - this technique has been an important 
mechanism for keeping a stable code base for our users
while also allowing them access to the latest features in 
the form of a beta version of the code.  We typically aim 
to release a new "main" (stable) version of our code 
approximately every 6-9 months, although in reality the 
decision is made based on a combination of what we find 
our users using (i.e. have they all jumped from the main to 
beta version?), and what “feels right” based on project 
management decisions.  In the interim, the developers are 
working daily on our "maindev" branch to keep it as 
stable as possible, while applying bug fixes to the main
branch as necessary. 
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Before creating a new main branch, we feature freeze the 
maindev version and focus entirely on reducing bugs and 
enhancing stability (this is where we run our complete set 
of "promotion" tests).  This phase is called "premain", and 
can last anywhere from 2-6 weeks.  During this time, we
begin the next maindev branch - which effectively leaves 
us with three simultaneous branches of development:  the 
main stable branch, the premain branch (the candidate for 
the next main release), and the next maindev branch.  

For development where we anticipate potential large
disruption to the code base, we try to get those in early on 
a new maindev branch so as to give ourselves plenty of 
time to work out the potential bugs before users begin 
demanding the features on that branch, and thus a public 
release.

The details of how all this is performed are beyond the 
scope of this paper, and similar techniques can be found in 
other literature [2].  However, an important aspect to 
making this rather complex usage of an SCM system work 
has been the introduction of a set of customized scripts 
designed to ease the process for developers - many of who 
are not computer scientists by training, and simply want 
an SCM system to stay out of their way.  By providing
these scripts to encapsulate our process, we help make 
sure that developers don't "cheat" by doing an end around 
to avoid repetitive or onerous tasks.  But it also helps that 
they find SCM something simple to use, unobtrusive, and 
ultimately indispensable.

5. Risk-Based Software Quality Assurance

Our lab is nearly completed drafting its "Institutional 
Software Quality Assurance Policy", which is designed to 
cover all software projects on site.  As a U.S. Department 
of Energy (DOE) National Laboratory, we have a terrific 
range of software development going on in the area of 
High Performance Computing ranging from small single
person "research codes", to larger scale simulation codes 
being used for U.S. nuclear stockpile stewardship.  How 
can an institutional policy apply to such a wide array of 
projects?  And how can we ensure our researchers that 
they won't be swept up into a frenzy of CMMi  [3] 
standardizations?

We believe the answer lies in applying a risk-based 
approach to SQA.  In our institutional policy, we have 
outlined a rather simple questionnaire designed to help 
each project determine its risk level: low, medium, or 
high.  These levels are determined by investigating a 
combination of consequences of software failure, and 
likelihood of failure. The details are not important, but 

high risk roughly maps to great loss of money, reputation, 
or human life.  Low risk maps to inconsequential results 
of failure such as inconvenience to the user.  Mid risk 
obviously falls somewhere in between, and applies to a 
great number of long term funded projects.

Once the level of risk for a project has been determined, 
our policy goes on to suggest a level of formality for a 
series of standard SQA topics.  For example, a low risk 
project may only need to perform requirements 
management on an informal, ad-hoc scale.  While a high
risk project is expected to conform to more formal 
standards as appropriate.

The policy does not go so far as to prescribe how any of 
the suggested methods should be applied.  It has long been 
the understanding at our laboratory that one size does not 
fit all, and that prescribing anything as a mandate (be it a 
tool, method, or process) will result in push back from the 
staff.  The only requirements issued by the policy are that 
each project must do the risk analysis to determine their 
level of risk, and they must reassess their risk at regular 
intervals.  (ie - a project that starts out as a low-risk
research project may eventually find itself being used for 
safety analysis, and thus mid or high risk).

6. Metrics for Expected CPU Performance

Any HPC project will ultimately be expected to quantify 
their performance on whatever hardware the funding 
institution has purchased.  Given that percentage of peak 
performance is not a good metric on which to base the 
success or failure of a particular code to optimally use 
architecture, we have done some very preliminary work to 
help us understand what sort of performance we might 
expect from a given CPU architecture.

For example, consider the IBM Power3 CPU, which has a 
peak speed of 1.5 GFlops.  In order for a code to obtain 
this peak performance, it must issue two fused floating 
point multiply-add (FMA) instructions every cycle, for a 
total of 4 flops per cycle (4 x 375 MHz = 1.5 GFlop).  

What if your application is not able to issue 100% FMA 
instructions, but is reliant on regular add and multiply 
instructions?  What if it can’t feed the CPU with data fast 
enough to issue two floating point operations per cycle?  
What if your code is dominated by integer calculations?  
Obviously the answer is you’ll get much lower than peak.  
But what can we expect?

To help answer this question, we took measurements from 
several of our codes using the freely available PAPI [4]
tool.  For this study, we focused on two primary metrics:  
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1) the floating point instruction mix (the percentage of 
floating point instructions that were FMA instructions), 
and 2) the computational intensity, or the number of 
floating point instructions issued per memory access.

Given just these two algorithmic characteristics of our 
code, we then devised a very simple model which helped 
us put an upper bound on expected performance from the 
Power3 architecture.  With this model, we were able to 
show that assuming the metrics collected are a given (i.e. 
we can’t change the instruction mix or computational 
intensity, at least not dramatically) we could expect 
anywhere from 16% to 37% as an upper bound on 
performance for the Power3.  This did not yet even take 
into account other factors such as cache misses, integer 
instructions, branch mispredictions, etc…

Given this model, it was much easier to go to our 
reviewers and show that although we were only getting 
approximately 10% of peak CPU performance on this 
architecture – we were within striking distance of this 
theoretical upper bound.  

7. Software Architecture and Refactoring

A sound software architecture is clearly key to the 
longetivity of a software project which is constantly 
undergoing changes in requirements.  Although we do not 
claim to have the most modern or robust architecture in 
the HPC world, we are slowly improving on our legacy 
code roots by incrementally introducing new and 
improved data structures, programming languages, 3rd

party libraries, etc…  

Although we don’t feel like we have any particularly 
special magic for managing this sort of process, we are 
staunch believers in disciplined restructuring and 
rewriting of code for the sake of improving the underlying 
architecture.  A key element of this technique (often 
referred to as refactoring) is that management must accept 
that a potentially long period of time may be spent in this 
process with no obviously apparent benefit to the end 
user.  In other words, when refactoring is done – no new 
features will have been added to the software that would 
be immediately observable.  Of course, longer term –
good refactoring will add extensibility to the code and 
allow for changing requirements to be easily implemented 
without layering “hack upon hack”.

This sort of “rebuilding the plane while in flight” makes 
for difficult project management, and begs for several of 
the techniques outlined elsewhere in this paper.  In 
particular, a good regression test suite is essential if one is 
going to make substantial changes to the software 

architecture with the expectation that answers should not 
change.  Likewise, some sort of multi-branch development
that isolates potentially disruptive changes from a stable 
version of the code that users are relying on is highly 
desirable.

In the past, the problem of codes “collapsing under their 
own weight” was often solved by performing a large 
rewrite.  While this model worked well in the past, many 
projects are now much more complex (3D, multiphysics, 
highly parallel, etc…) and as such, we cannot afford to 
simply rewrite them every 5-10 years.  Some codes are 
now expected to last decades, and as such – a positive 
attitude toward refactoring is an important project 
management consideration.

8. Other Useful Metrics

In our never-ending quest to improve our software 
processes (not to mention prepare ourselves for the 
inevitable SQA audit!), we are currently investigating 
other metrics that we believe will hold some promise.  We 
are also finding new ways to apply metrics we have 
gathered all along in new ways.

Test function coverage data is something that we have 
been gathering for quite some time, and it has been useful 
in determining where our various test suites are lacking.  
Likewise, it has been useful in helping us design our 
smoke test suite in that we can easily sort our entire suite 
of problems on a chart with function coverage on one axis 
and runtime on another.  By doing this, we can quickly 
determine a set of tests which will give us the most “bang 
for the buck”, or the most coverage in the shortest amount 
of time.  (Recall that a critical requirement of our smoke 
test was a short execution time, as it determines the rate at 
which developers can update our mainline branches).

Code complexity, as determined through static analysis 
tools such as McCabe QA[5], is something else we are 
beginning to use in a new process.  Although we have 
gathered various complexity metrics from McCabe 
through the years, they were often used primarily as a way 
to target coding for refactoring.  Now we are looking into 
using these metrics in combination with our test coverage 
metrics to improve our test suites.  The idea is to make 
sure that the most complex parts of the code are exercised 
more often.

The final metric we will discuss here is the “user 
satisfaction” metric. Gathered through an interview 
process by either the project management, or the teams’ 
SQA authority, this involves a simple questionnaire with a 
“rate this 1 to 10” section covering several high level
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areas such as reliability, usability, flexibility, support, 
etc…

User satisfaction is really what doing good software 
engineering is all about, is it not?  But how often do we 
quantitatively ask our users how they think we’re doing?
This metric is almost too obvious, yet we found that we 
were pioneers in using it, at least in our circle of projects.  

Our first round of surveys did not lead us to any surprises 
in that we scored reletively lower in areas where we 
suspected our users would have reason to score us low.  
But the real value in this metric may not become apparent 
for another several years when we can begin to detect 
trends over time.

Of course, in order for this sort of metric to be statistically 
valuable, one must choose a representative set of users.  
This includes both the happy users, and the perpetually 
angry users!

9. Conclusion

Developing software in the world of high performance 
computing is unique and distinct from industry standards.  
We often have ill-defined and changing requirements, 
developers with a lack of expertise in software 
engineering, customers who are either themselves 
developers or sit right down the hall, as well as other key 
differences.  Each HPC project needs to consider carefully 
what software quality engineering processes they will put 
in place, with a goal toward making their lives easier, and 
making the end customers happy.

Although we don’t claim to have all the answers, we do 
have a relatively large HPC software project that has 
managed to pick and choose (and sometimes self-
discover) software engineering concepts that have proven
most valuable to us.  The most valuable metric however, 
is one that probably cannot be easily measured:  the sense 
from the development team that it is working well 
together, and the users are happy with the results.

Some of our most valuable processes have come from 
conversations with distant colleagues in conversations that 
started out like “We have a problem with process X, how 
do you deal with that?”   It is rare that a process torn from 
the pages of a software engineering textbook has proven 
valuable to us.  We hope this paper serves as guidance for 
perhaps other groups beginning to struggle with growing 
pains.  Likewise, we hope to learn from other groups what 
they consider to be their best practices so we can steal 
them for ourselves!
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